推廣 熱搜: 2022  財(cái)務(wù)  微信  法律    網(wǎng)格化  管理  營(yíng)銷  總裁班  安全 

大數(shù)據(jù)分析與挖掘綜合能力提升實(shí)戰(zhàn)

主講老師: 傅一航 傅一航

主講師資:傅一航

課時(shí)安排: 1天/6小時(shí)
學(xué)習(xí)費(fèi)用: 面議
課程預(yù)約: 隋老師 (微信同號(hào))
課程簡(jiǎn)介: 本系列課程從實(shí)際的業(yè)務(wù)需求出發(fā),結(jié)合行業(yè)的典型應(yīng)用特點(diǎn),圍繞實(shí)際的商業(yè)問(wèn)題,對(duì)數(shù)據(jù)預(yù)測(cè)建模的過(guò)程進(jìn)行了全面的介紹。
內(nèi)訓(xùn)課程分類: 綜合管理 | 人力資源 | 市場(chǎng)營(yíng)銷 | 財(cái)務(wù)稅務(wù) | 基層管理 | 中層管理 | 領(lǐng)導(dǎo)力 | 管理溝通 | 薪酬績(jī)效 | 企業(yè)文化 | 團(tuán)隊(duì)管理 | 行政辦公 | 公司治理 | 股權(quán)激勵(lì) | 生產(chǎn)管理 | 采購(gòu)物流 | 項(xiàng)目管理 | 安全管理 | 質(zhì)量管理 | 員工管理 | 班組管理 | 職業(yè)技能 | 互聯(lián)網(wǎng)+ | 新媒體 | TTT培訓(xùn) | 禮儀服務(wù) | 商務(wù)談判 | 演講培訓(xùn) | 宏觀經(jīng)濟(jì) | 趨勢(shì)發(fā)展 | 金融資本 | 商業(yè)模式 | 戰(zhàn)略運(yùn)營(yíng) | 法律風(fēng)險(xiǎn) | 沙盤模擬 | 國(guó)企改革 | 鄉(xiāng)村振興 | 黨建培訓(xùn) | 保險(xiǎn)培訓(xùn) | 銀行培訓(xùn) | 電信領(lǐng)域 | 房地產(chǎn) | 國(guó)學(xué)智慧 | 心理學(xué) | 情緒管理 | 時(shí)間管理 | 目標(biāo)管理 | 客戶管理 | 店長(zhǎng)培訓(xùn) | 新能源 | 數(shù)字化轉(zhuǎn)型 | 工業(yè)4.0 | 電力行業(yè) |
更新時(shí)間: 2023-09-01 10:57


課程目標(biāo)】

本課程為進(jìn)階課程,面向所有業(yè)務(wù)支撐部門及數(shù)據(jù)分析部門。

本課程的主要目的是,幫助學(xué)員掌握大數(shù)據(jù)建?;A(chǔ)知識(shí),幫助學(xué)員構(gòu)建系統(tǒng)全面的預(yù)測(cè)建模思維,提升學(xué)員的數(shù)據(jù)建模綜合能力。

本課程具體內(nèi)容包括:

1、 數(shù)據(jù)建模流程,特征工程處理

2、 線性回歸模型,模型基本原理

3、 模型質(zhì)量評(píng)估,模型優(yōu)化措施

4、 回歸方程解讀,自定義回歸模型

 

系列課程實(shí)際的業(yè)務(wù)需求出發(fā),結(jié)合行業(yè)的典型應(yīng)用特點(diǎn),圍繞實(shí)際的商業(yè)問(wèn)題,對(duì)數(shù)據(jù)預(yù)測(cè)建模的過(guò)程進(jìn)行了全面的介紹(從模型選擇,到特征選擇,再到訓(xùn)練模型,評(píng)估模型,以及優(yōu)化模型和模型解讀),通過(guò)大量的操作演練,幫助學(xué)員掌握數(shù)據(jù)建模的思路、方法、技巧,以提升學(xué)員的數(shù)據(jù)建模的能力,支撐運(yùn)營(yíng)決策的目的。

通過(guò)本課程的學(xué)習(xí),達(dá)到如下目的:

1、 掌握數(shù)據(jù)建模的標(biāo)準(zhǔn)過(guò)程和步驟

2、 掌握建模前的特征選擇常用方法,學(xué)會(huì)尋找影響業(yè)務(wù)的關(guān)鍵要素

3、 掌握回歸預(yù)測(cè)模型基本原理,學(xué)會(huì)解讀回歸方程的含義

4、 理解并掌握定量預(yù)測(cè)模型的評(píng)估指標(biāo)的含義

5、 學(xué)會(huì)利用規(guī)劃求解實(shí)現(xiàn)自定義回歸模型(非線性回歸模型)

6、 掌握常用的回歸模型優(yōu)化措施

7、 熟練掌握數(shù)據(jù)預(yù)處理的基本任務(wù),并根據(jù)業(yè)務(wù)實(shí)際情況進(jìn)行處理

【授課時(shí)間】

2時(shí)間(每天6個(gè)小時(shí))

【授課對(duì)象】

產(chǎn)品銷量部、業(yè)務(wù)支撐部、運(yùn)營(yíng)分析部、數(shù)據(jù)分析部、大數(shù)據(jù)系統(tǒng)開(kāi)發(fā)部等對(duì)業(yè)務(wù)數(shù)據(jù)分析有較高要求的相關(guān)人員。

【學(xué)員要求】

1、 每個(gè)學(xué)員自備一臺(tái)便攜機(jī)(必須)

2、 便攜機(jī)中事先安裝好Microsoft Office Excel 2013版本及以上。

3、 便攜機(jī)中事先安裝好IBM SPSS Statistics v19版本及以上。

注:講師可以提供試用版本軟件及分析數(shù)據(jù)源。

【授課方式】

理論精講 + 模型原理 + 實(shí)際業(yè)務(wù)問(wèn)題分析 + 工具實(shí)踐操作

采用互動(dòng)式教學(xué),圍繞業(yè)務(wù)問(wèn)題,展開(kāi)數(shù)據(jù)分析過(guò)程,全過(guò)程演練操作,讓學(xué)員在分析、分享、講授、總結(jié)、自我實(shí)踐過(guò)程中獲得能力提升。

課程大綱】

第一部分: 數(shù)據(jù)建模過(guò)程建模步驟篇

1、 預(yù)測(cè)建模六步法

選擇模型:基于業(yè)務(wù)選擇恰當(dāng)?shù)臄?shù)據(jù)模型

特征工程:選擇對(duì)目標(biāo)變量有顯著影響的屬性來(lái)建模

訓(xùn)練模型:采用合適的算法對(duì)模型進(jìn)行訓(xùn)練,尋找到最優(yōu)參數(shù)

評(píng)估模型:進(jìn)行評(píng)估模型的質(zhì)量,判斷模型是否可用

優(yōu)化模型:如果評(píng)估結(jié)果不理想,則需要對(duì)模型進(jìn)行優(yōu)化

應(yīng)用模型:如果評(píng)估結(jié)果滿足要求,則可應(yīng)用模型于業(yè)務(wù)場(chǎng)景

2、 數(shù)據(jù)挖掘常用的模型

定量預(yù)測(cè)模型:回歸預(yù)測(cè)、時(shí)序預(yù)測(cè)等

定性預(yù)測(cè)模型:邏輯回歸、決策樹(shù)、神經(jīng)網(wǎng)絡(luò)、支持向量機(jī)等

市場(chǎng)細(xì)分:聚類、RFM、PCA等

產(chǎn)品推薦:關(guān)聯(lián)分析、協(xié)同過(guò)濾等

產(chǎn)品優(yōu)化:回歸、隨機(jī)效用等

產(chǎn)品定價(jià):定價(jià)策略/最優(yōu)定價(jià)等

3、 特征工程/特征選擇/變量降維

基于變量本身特征

基于相關(guān)性判斷

因子合并(PCA等)

IV值篩選(評(píng)分卡使用)

基于信息增益判斷(決策樹(shù)使用)

4、 模型評(píng)估

模型質(zhì)量評(píng)估指標(biāo):R^2、正確率/查全率/查準(zhǔn)率/特異性等

預(yù)測(cè)值評(píng)估指標(biāo):MAD、MSE/RMSE、MAPE、概率等

模型評(píng)估方法:留出法、K拆交叉驗(yàn)證、自助法等

其它評(píng)估:過(guò)擬合評(píng)估、殘差檢驗(yàn)

5、 模型優(yōu)化

優(yōu)化模型:選擇新模型/修改模型

優(yōu)化數(shù)據(jù):新增顯著自變量

優(yōu)化公式:采用新的計(jì)算公式

集成思想:Bagging/Boosting/Stacking

6、 常用預(yù)測(cè)模型介紹

時(shí)序預(yù)測(cè)模型

回歸預(yù)測(cè)模型

分類預(yù)測(cè)模型

第二部分: 數(shù)據(jù)建模過(guò)程特征工程篇

問(wèn)題:如何選擇合適的屬性/特征來(lái)建模呢?選擇的依據(jù)是什么?比如價(jià)格是否可用于產(chǎn)品銷量預(yù)測(cè)?

1、 數(shù)據(jù)預(yù)處理vs特征工程

2、 特征工程處理內(nèi)容

變量變換

變量派生

變量精簡(jiǎn)(特征選擇、因子合并)

類型轉(zhuǎn)換

3、 特征選擇常用方法

相關(guān)分析、方差分析、卡方檢驗(yàn)

4、 相關(guān)分析(衡量?jī)蓴?shù)據(jù)型變量的線性相關(guān)性)

相關(guān)分析簡(jiǎn)介

相關(guān)分析的應(yīng)用場(chǎng)景

相關(guān)分析的種類

簡(jiǎn)單相關(guān)分析

偏相關(guān)分析

距離相關(guān)分析

相關(guān)系數(shù)的三種計(jì)算公式

Pearson相關(guān)系數(shù)

Spearman相關(guān)系數(shù)

Kendall相關(guān)系數(shù)

相關(guān)分析的假設(shè)檢驗(yàn)

相關(guān)分析的四個(gè)基本步驟

演練:營(yíng)銷費(fèi)用會(huì)影響銷售額嗎?影響程度如何量化?

演練:哪些因素與汽車銷量有相關(guān)性

演練影響用戶消費(fèi)水平的因素會(huì)有哪些

偏相關(guān)分析

偏相關(guān)原理:排除不可控因素后的兩變量的相關(guān)性

偏相關(guān)系數(shù)的計(jì)算公式

偏相關(guān)分析的適用場(chǎng)景

距離相關(guān)分析

5、 方差分析(衡量類別變量與數(shù)值變量間的相關(guān)性)

方差分析的應(yīng)用場(chǎng)景

方差分析的三個(gè)種類

單因素方差分析

多因素方差分析

協(xié)方差分析

單因素方差分析的原理

方差分析的四個(gè)步驟

解讀方差分析結(jié)果的兩個(gè)要點(diǎn)

演練擺放位置與銷量有關(guān)嗎

演練:客戶學(xué)歷對(duì)消費(fèi)水平的影響分析

演練廣告和價(jià)格是影響終端銷量的關(guān)鍵因素嗎

演練營(yíng)業(yè)員的性別、技能級(jí)別對(duì)產(chǎn)品銷量有影響嗎

演練:尋找影響產(chǎn)品銷量的關(guān)鍵因素

多因素方差分析原理

多因素方差分析的作用

多因素方差結(jié)果的解讀

演練:廣告形式、地區(qū)對(duì)銷量的影響因素分析

協(xié)方差分析原理

協(xié)方差分析的適用場(chǎng)景

演練:排除產(chǎn)品價(jià)格,收入對(duì)銷量有影響嗎?

6、 列聯(lián)分析/卡方檢驗(yàn)(兩類別變量的相關(guān)性分析)

交叉表與列聯(lián)表:計(jì)數(shù)值與期望值

卡方檢驗(yàn)的原理

卡方檢驗(yàn)的幾個(gè)計(jì)算公式

列聯(lián)表分析的適用場(chǎng)景

案例:套餐類型對(duì)客戶流失的影響分析

案例:學(xué)歷對(duì)業(yè)務(wù)套餐偏好的影響分析

案例:行業(yè)/規(guī)模對(duì)風(fēng)控的影響分析

第三部分: 定量預(yù)測(cè)模型回歸模型篇

營(yíng)銷問(wèn)題:如何預(yù)測(cè)未來(lái)的產(chǎn)品銷量/銷售額?如果產(chǎn)品跟隨季節(jié)性變動(dòng),該如何預(yù)測(cè)?

1、 回歸分析簡(jiǎn)介和原理

2、 回歸分析的種類

一元回歸/多元回歸

線性回歸/非線性回歸

3、 常用回歸分析方法

散點(diǎn)圖+趨勢(shì)線(一元)

線性回歸工具(多元線性)

規(guī)劃求解工具(非線性回歸)

演練:散點(diǎn)圖找營(yíng)銷費(fèi)用與銷售額的關(guān)系

4、 線性回歸分析的五個(gè)步驟

演練:營(yíng)銷費(fèi)用、辦公費(fèi)用與銷售額的關(guān)系(線性回歸)

5、 線性回歸方程的解讀技巧

定性描述:正相關(guān)/負(fù)相關(guān)

定量描述:自變量變化導(dǎo)致因變量的變化程度

6、 回歸預(yù)測(cè)模型評(píng)估

質(zhì)量評(píng)估指標(biāo):判定系數(shù)R^2

如何選擇最佳回歸模型

演練:如何選擇最佳的回歸預(yù)測(cè)模型(一元曲線回歸)

7、 帶分類自變量的回歸預(yù)測(cè)

演練:汽車季度銷量預(yù)測(cè)

演練工齡、性別與終端銷量的關(guān)系

演練:如何評(píng)估銷售目標(biāo)與資源最佳配置

8、 自動(dòng)篩選不顯著因素(自變量)

第四部分: 定量預(yù)測(cè)模型回歸優(yōu)化篇

1、 回歸分析的基本原理

三個(gè)基本概念:總變差、回歸變差、剩余變差

方程的顯著性檢驗(yàn):方程可用性

因素的顯著性檢驗(yàn):因素可用性

方程擬合優(yōu)度檢驗(yàn):質(zhì)量好壞程度

理解標(biāo)準(zhǔn)誤差含義:預(yù)測(cè)準(zhǔn)確性?

2、 回歸模型優(yōu)化措施:尋找最佳回歸擬合線

如何處理預(yù)測(cè)離群值(剔除離群值)

如何剔除顯著因素(剔除不顯著因素

如何進(jìn)行非線性關(guān)系檢驗(yàn)(增加非線性自變量)

如何進(jìn)行相互作用檢驗(yàn)(增加相互作用自變量)

如何進(jìn)行多重共線性檢驗(yàn)(剔除共線性自變量)

演練:模型優(yōu)化演示

3、 好模型都是優(yōu)化出來(lái)的

第五部分: 定量預(yù)測(cè)模型自定義回歸篇

1、 回歸建模的本質(zhì)

2、 規(guī)劃求解工具簡(jiǎn)介

3、 自定義回歸模型

案例:如何對(duì)客流量進(jìn)行建模預(yù)測(cè)及模型優(yōu)化

4、 回歸季節(jié)預(yù)測(cè)模型模型

回歸季節(jié)模型的原理及應(yīng)用場(chǎng)景

加法季節(jié)模型

乘法季節(jié)模型

模型解讀

案例美國(guó)航空旅客里程的季節(jié)性趨勢(shì)分析

5、 新產(chǎn)品累計(jì)銷量的S曲線

S曲線模型的應(yīng)用場(chǎng)景(最大累計(jì)銷量及銷量增長(zhǎng)的拐點(diǎn))

珀?duì)柷€

龔鉑茲曲線

案例如何預(yù)測(cè)產(chǎn)品的銷售增長(zhǎng)拐點(diǎn),以及銷量上限

演練:預(yù)測(cè)IPad產(chǎn)品的銷量

第六部分: 定量預(yù)測(cè)模型模型評(píng)估篇

1、 定量預(yù)測(cè)模型的評(píng)估

方程顯著性評(píng)估

因素顯著性評(píng)估

擬合優(yōu)度的評(píng)估

估計(jì)標(biāo)準(zhǔn)誤差評(píng)估

預(yù)測(cè)值準(zhǔn)確度評(píng)估

2、 模型擬合度評(píng)估

判定系數(shù):

調(diào)整判定系數(shù):

3、 預(yù)測(cè)值準(zhǔn)確度評(píng)估

平均絕對(duì)誤差:MAE

根均方差:RMSE

平均誤差率:MAPE

4、 其它評(píng)估:殘差檢驗(yàn)、過(guò)擬合檢驗(yàn)

 

結(jié)束:課程總結(jié)問(wèn)題答疑


 
反對(duì) 0舉報(bào) 0 收藏 0
更多>與大數(shù)據(jù)分析與挖掘綜合能力提升實(shí)戰(zhàn)相關(guān)內(nèi)訓(xùn)課
企業(yè)家經(jīng)營(yíng)哲學(xué)與企業(yè)經(jīng)營(yíng)之道 高   效   執(zhí)   行   力 教練式經(jīng)銷商管理 商業(yè)模式創(chuàng)新 創(chuàng)新思維管理應(yīng)用訓(xùn)練?—?jiǎng)?chuàng)造性解決問(wèn)題 創(chuàng)新思維和有效執(zhí)行 微課的設(shè)計(jì)與制作 高效能主管風(fēng)暴訓(xùn)練營(yíng)
傅一航老師介紹>傅一航老師其它課程
大數(shù)據(jù)產(chǎn)業(yè)現(xiàn)狀及應(yīng)用創(chuàng)新 大數(shù)據(jù)挖掘工具:SPSS Modeler入門與提高 大數(shù)據(jù)挖掘工具: SPSS Statistics入門與提高 大數(shù)據(jù)建模與模型優(yōu)化實(shí)戰(zhàn)培訓(xùn) 金融行業(yè)風(fēng)險(xiǎn)預(yù)測(cè)模型實(shí)戰(zhàn) 數(shù)說(shuō)營(yíng)銷——大數(shù)據(jù)營(yíng)銷實(shí)戰(zhàn)培訓(xùn) 大數(shù)據(jù)分析與挖掘綜合能力提升實(shí)戰(zhàn) 助力市場(chǎng)營(yíng)銷與服務(wù)的數(shù)據(jù)分析實(shí)戰(zhàn)
網(wǎng)站首頁(yè)  |  關(guān)于我們  |  聯(lián)系方式  |  誠(chéng)聘英才  |  網(wǎng)站聲明  |  隱私保障及免責(zé)聲明  |  網(wǎng)站地圖  |  排名推廣  |  廣告服務(wù)  |  積分換禮  |  網(wǎng)站留言  |  RSS訂閱  |  違規(guī)舉報(bào)  |  京ICP備11016574號(hào)-25