推廣 熱搜: 2022  財務(wù)  微信  法律    網(wǎng)格化  管理  營銷  總裁班  安全 

ChatGPT技術(shù)與商業(yè)模式及產(chǎn)業(yè)發(fā)展布局

主講老師: 李文耀
課時安排: 1-2天,6小時/天
學(xué)習(xí)費用: 面議
課程預(yù)約: 隋老師 (微信同號)
課程簡介: ChatGPT(全稱Chat Generative Pre-trained Transformer),聊天式預(yù)訓(xùn)練生成轉(zhuǎn)換模型,是一種生成式語言模型,俗稱 “通用聊天機(jī)器人”,是人工智能研究實驗室OpenAI開發(fā)的一種基于人工智能(AI)技術(shù)的自然語言處理工具。該模型基于Transformer神經(jīng)網(wǎng)絡(luò)架構(gòu),即GPT3.5架構(gòu),并且還在繼續(xù)演進(jìn)與發(fā)展。
內(nèi)訓(xùn)課程分類: 綜合管理 | 人力資源 | 市場營銷 | 財務(wù)稅務(wù) | 基層管理 | 中層管理 | 領(lǐng)導(dǎo)力 | 管理溝通 | 薪酬績效 | 企業(yè)文化 | 團(tuán)隊管理 | 行政辦公 | 公司治理 | 股權(quán)激勵 | 生產(chǎn)管理 | 采購物流 | 項目管理 | 安全管理 | 質(zhì)量管理 | 員工管理 | 班組管理 | 職業(yè)技能 | 互聯(lián)網(wǎng)+ | 新媒體 | TTT培訓(xùn) | 禮儀服務(wù) | 商務(wù)談判 | 演講培訓(xùn) | 宏觀經(jīng)濟(jì) | 趨勢發(fā)展 | 金融資本 | 商業(yè)模式 | 戰(zhàn)略運營 | 法律風(fēng)險 | 沙盤模擬 | 國企改革 | 鄉(xiāng)村振興 | 黨建培訓(xùn) | 保險培訓(xùn) | 銀行培訓(xùn) | 電信領(lǐng)域 | 房地產(chǎn) | 國學(xué)智慧 | 心理學(xué) | 情緒管理 | 時間管理 | 目標(biāo)管理 | 客戶管理 | 店長培訓(xùn) | 新能源 | 數(shù)字化轉(zhuǎn)型 | 工業(yè)4.0 | 電力行業(yè) |
更新時間: 2023-02-27 14:09

《ChatGPT技術(shù)與商業(yè)模式及產(chǎn)業(yè)發(fā)展布局》

高端培訓(xùn) 課程大綱

一、  培訓(xùn)背景分析:

ChatGPT(全稱Chat Generative Pre-trained Transformer),聊天式預(yù)訓(xùn)練生成轉(zhuǎn)換模型,是一種生成式語言模型,俗稱 “通用聊天機(jī)器人”,是人工智能研究實驗室OpenAI開發(fā)的一種基于人工智能(AI)技術(shù)的自然語言處理工具。該模型基于Transformer神經(jīng)網(wǎng)絡(luò)架構(gòu),即GPT3.5架構(gòu),并且還在繼續(xù)演進(jìn)與發(fā)展。

ChatGPT的總體技術(shù)路線是:采用自然語言處理+搜索引擎集成的架構(gòu),構(gòu)建GPT3.5+大型語言模型(LLM)+強(qiáng)化學(xué)習(xí)微調(diào)訓(xùn)練模型(RLHF),通過連接大量的語料庫,在效果強(qiáng)大、基于自注意力機(jī)制的GPT3.5架構(gòu)的大型語言模型(LLM)基礎(chǔ)上,引入RLHF(基于人類反饋的強(qiáng)化學(xué)習(xí))技術(shù),通過預(yù)訓(xùn)練方法處理大模型序列數(shù)據(jù)來訓(xùn)練模型,通過“人工標(biāo)注數(shù)據(jù)(人工反饋)+強(qiáng)化學(xué)習(xí)”來不斷微調(diào)(Fine-tune)預(yù)訓(xùn)練語言模型,從而實現(xiàn)擁有語言理解和文本生成的能力,以完成特定任務(wù)。ChatGPT實現(xiàn)的關(guān)鍵要素是:NLP(自然語言處理)是核心 ,搜索是輔助,算力是硬核。

ChatGPT是生成式人工智能技術(shù),是一個創(chuàng)造性的新世界。ChatGPT模型以對話的方式進(jìn)行人機(jī)交互,包括普通聊天、連續(xù)對話,語言翻譯、信息咨詢、方案策劃、撰寫詩詞作文、編寫程序、修改代碼等,ChatGPT不僅能夠回答后續(xù)問題,還能承認(rèn)錯誤,質(zhì)疑不正確的問題,并拒絕不適當(dāng)?shù)恼埱?。ChatGPT具備上知天文、下知地理,還能根據(jù)聊天的上下文進(jìn)行互動的能力,做到與真正人類幾乎無異的聊天場景進(jìn)行交流。ChatGPT于2022年11月30日上線測試,2022年12月5日,ChatGPT用戶數(shù)突破了100萬,目前,ChatGPT月活用戶數(shù)超過一億。

習(xí)近平總書記曾指出:“數(shù)字技術(shù)正以新理念、新業(yè)態(tài)、新模式全面融入人類經(jīng)濟(jì)、政治、文化、社會、生態(tài)文明建設(shè)各領(lǐng)域和全過程”。在當(dāng)前數(shù)字世界和物理世界加速融合的大背景下,以ChatGPT為代表的人工智能生成內(nèi)容(AIGC)技術(shù)正在悄然引導(dǎo)著一場深刻的變革,重塑甚至顛覆數(shù)字內(nèi)容的生產(chǎn)方式和消費模式,將極大地豐富人們的數(shù)字生活,是未來全面邁向數(shù)字文明新時代不可或缺的支撐力量。

基于上述分析,為進(jìn)一步推動以ChatGPT為代表的人工智能生成內(nèi)容(AIGC)技術(shù)的廣泛應(yīng)用及產(chǎn)業(yè)發(fā)展與布局,賦能我國數(shù)字經(jīng)濟(jì)、數(shù)字政府、數(shù)字社會高質(zhì)量發(fā)展,為培養(yǎng)數(shù)字轉(zhuǎn)型時代急需的高端人才,特在全國開展《ChatGPT技術(shù)與商業(yè)模式及產(chǎn)業(yè)發(fā)展布局》高端咨詢類培訓(xùn)課程。

本課程技術(shù)交流的主要宗旨是:

從ChatGPT的技術(shù)方案中,學(xué)習(xí)更多有價值的東西,不僅僅是單純的技術(shù),單純的軟件、工具或算法,更重要的是學(xué)習(xí)其中的邏輯思維方法、科學(xué)研究方法、技術(shù)與產(chǎn)品創(chuàng)新方法等。讓我們深刻領(lǐng)悟,技術(shù)方案中的某一點點創(chuàng)新,卻可以引發(fā)革命性的巨變,創(chuàng)造巨大的價值。

本課程的主要亮點是:

(1)本課程以前瞻性、獨特的視角,按照概念篇、架構(gòu)篇、技術(shù)篇、算力篇、體驗篇、應(yīng)用篇、商業(yè)篇、產(chǎn)業(yè)篇、建議篇九大模塊,對ChatGPT技術(shù)進(jìn)行系統(tǒng)、全面,深刻、而又富于創(chuàng)新地闡述。

(2)關(guān)注訴求與商用落地,從商機(jī)挖掘、產(chǎn)業(yè)發(fā)展、行業(yè)應(yīng)用布局等維度,闡述以ChatGPT技術(shù)為代表的生成式人工智能(AI)技術(shù)的創(chuàng)新應(yīng)用理念與產(chǎn)業(yè)發(fā)展和行業(yè)應(yīng)用布局。

二、  培訓(xùn)主要內(nèi)容:

本課程采用模塊化教學(xué)方法,總體架構(gòu)主要包括以下9個教學(xué)模塊:

模塊一:概念篇-ChatGPT概念詮釋及技術(shù)發(fā)展

模塊二:架構(gòu)篇-ChatGPT系統(tǒng)架構(gòu)及工作流程

模塊三:技術(shù)篇-ChatGPT關(guān)鍵技術(shù)及原理詳解

模塊四:算力篇-ChatGPT算力需求及算力布局

模塊五:體驗篇-ChatGPT基本功能及使用體驗

模塊六:應(yīng)用篇-ChatGPT應(yīng)用場景及行業(yè)布局

模塊七:商業(yè)篇-ChatGPT商業(yè)模式及商機(jī)挖掘

模塊八:產(chǎn)業(yè)篇-ChatGPT產(chǎn)業(yè)發(fā)展及投資分析

模塊九:建議篇-ChatGPT面臨挑戰(zhàn)及發(fā)展建議

三、    培訓(xùn)內(nèi)容及時間安排:3天,6小時/天

授課時間

授課內(nèi)容

授課時長

第一天

上午

模塊一:概念篇-ChatGPT概念詮釋及技術(shù)發(fā)展

1小時

模塊二:架構(gòu)篇-ChatGPT系統(tǒng)架構(gòu)及工作流程

2小時

下午

模塊三:技術(shù)篇-ChatGPT關(guān)鍵技術(shù)及原理詳解(1)

3小時

課程小結(jié)、答疑、交流討論與互動環(huán)節(jié)

0.5小時

第二天

上午

模塊三:技術(shù)篇-ChatGPT關(guān)鍵技術(shù)及原理詳解(2)

3小時

下午

模塊四:算力篇-ChatGPT算力需求及算力布局

3小時

課程小結(jié)、答疑、交流討論與互動環(huán)節(jié)

0.5小時

第三天

上午

模塊五:體驗篇-ChatGPT基本功能及使用體驗

1小時

模塊六:應(yīng)用篇-ChatGPT應(yīng)用場景及行業(yè)布局

2小時

 

下午

模塊七:商業(yè)篇-ChatGPT商業(yè)模式及商機(jī)挖掘

1小時

模塊八:產(chǎn)業(yè)篇-ChatGPT產(chǎn)業(yè)發(fā)展及投資分析

1.5小時

模塊九:建議篇-ChatGPT面臨挑戰(zhàn)及發(fā)展建議

0.5小時

課程總結(jié)、答疑、交流討論與互動環(huán)節(jié)

0.5小時

四、  培訓(xùn)對象:

人工智能及ChatGPT技術(shù)產(chǎn)業(yè)鏈各廠家、芯片/模組/終端廠家、互聯(lián)網(wǎng)公司、互聯(lián)網(wǎng)服務(wù)提供商(ISP)、互聯(lián)網(wǎng)內(nèi)容提供商(ICP)、互聯(lián)網(wǎng)軟件開發(fā)公司、電信運營商、廣電運營商、游戲公司、新媒體制作公司、各行業(yè)客戶、企事業(yè)單位、咨詢公司、科研院所與大專院校等單位,從事人工智能及ChatGPT技術(shù)相關(guān)工作的管理人管、技術(shù)人員等。

五、  課程詳細(xì)大綱:

培訓(xùn)主題

詳細(xì)內(nèi)容

模塊一:概念篇-ChatGPT概念詮釋及技術(shù)發(fā)展

1.ChatGPT概念詮釋及技術(shù)發(fā)展

1.1什么是ChatGPT?(技術(shù)視角、OpenAI、維基百科的定義)

1.2 ChatGPT技術(shù)核心要點詮釋

1.3      問題:如何理解ChatGPT?-理解ChatGPT的關(guān)鍵點

1.3.1 ChatGPT是如何工作的?

1.3.2 ChatGPT的訓(xùn)練數(shù)據(jù)來源于何處?

1.3.3 ChatGPT如何進(jìn)行模型預(yù)訓(xùn)練?

1.3.4 ChatGPT是如何自動生成文本的?

1.3.5 ChatGPT如何準(zhǔn)確回答問題?

1.3.6 ChatGPT如何按照人類思維回答問題?

1.4問題:ChatGPT的主要技術(shù)有哪些?

1.5 ChatGPT的主要特點有哪些?

1.6ChatGPT的最大創(chuàng)新點是什么?

1.7ChatGPT優(yōu)化對話語言模型的優(yōu)化目標(biāo)是什么?

1.8ChatGPT與普通聊天機(jī)器人的區(qū)別是什么?

1.9ChatGPT存在的問題與不足是什么?

1.10ChatGPT界面及網(wǎng)址

1.11ChatGPT的基本功能

1.12 ChatGPT和AIGC的關(guān)系是什么?

1.13 ChatGPT、AIGC和元宇宙的關(guān)系是什么?

1.14 ChatGPT對推動元宇宙的商用落地與快速發(fā)展有何影響?

1.15ChatGPT的產(chǎn)生、發(fā)展及影響

1.15.1 ChatGPT的產(chǎn)生

1.15.2 ChatGPT的發(fā)展歷程(GTP-1,GTP-2,GTP-3, ChatGPT, GTP-4)

1.15.3 ChatGPT的研究現(xiàn)狀

1.15.4 ChatGPT的產(chǎn)生與發(fā)展對人類社會將帶來什么影響?

1.15.5 ChatGPT對哪些職業(yè)和工作產(chǎn)生挑戰(zhàn)和影響?

1.16 ChatGPT對我們的啟示有哪些?

1.17如何從ChatGPT的技術(shù)方案中學(xué)習(xí)有價值的東西?

1.18 如何運用基于人工智能的ChatGPT技術(shù)方案賦能行業(yè)智慧應(yīng)用與商用落地和快速發(fā)展?

模塊二:架構(gòu)篇-ChatGPT系統(tǒng)架構(gòu)及工作流程

 

2. ChatGPT的系統(tǒng)架構(gòu)及工作流程

2.1 ChatGPT的總體技術(shù)路線是什么?

2.1.1自然語言處理+搜索引擎集成架構(gòu)

2.1.2 GPT3.5+大型語言模型(LLM)+強(qiáng)化學(xué)習(xí)微調(diào)訓(xùn)練模型架構(gòu)

2.1.3 ChatGPT實現(xiàn)的關(guān)鍵要素有哪些?

2.2 構(gòu)建ChatGPT系統(tǒng)架構(gòu)需要考慮哪些關(guān)鍵問題?

2.2.1 ChatGPT技術(shù)架構(gòu)的關(guān)鍵點是什么?

2.2.2 ChatGPT預(yù)訓(xùn)練模型有哪些?

2.2.3 ChatGPT預(yù)訓(xùn)練數(shù)據(jù)集有哪些?

2.2.4 ChatGPT如何進(jìn)行模型預(yù)訓(xùn)練?

2.2.5 ChatGPT進(jìn)行模型訓(xùn)練的步驟有哪些?

2.3 ChatGPT的工作流程-理解ChatGPT架構(gòu)的基礎(chǔ)

2.3.1 有監(jiān)督微調(diào)(SFT)

2.3.2 獎勵模型(RM)訓(xùn)練

2.3.3 PPO模型強(qiáng)化學(xué)習(xí)

2.3.4 基于人類反饋的強(qiáng)化學(xué)習(xí)-RLHF

2.3.5 例子:ChatGPT語言處理的工作流程

語言處理數(shù)據(jù)流轉(zhuǎn)流程:輸入文本、語言識別、情感分析、信息抽取、命名實體識別、句子相似性處理、文本分類、全文搜索、文本生成、上下文管理、問題解答、輸出文本

2.4 ChatGPT的系統(tǒng)架構(gòu)-Transformer架構(gòu)

2.4.1什么是Transformer?

2.4.2   Transformer模型的作用

2.4.3   Transformer總體架構(gòu)及組成

(1)輸入部分,(2)輸出部分,(3)編碼器部分,(4)解碼器部分

2.4.4   Encoder-Decoder編碼器-解碼器框架

2.4.5   輸入部分的實現(xiàn)

(1)文本嵌入層及作用,(2)位置編碼器及作用

2.4.6編碼器部分的實現(xiàn)

(1)掩碼張量,(2)注意力機(jī)制,(3)多頭注意力機(jī)制,(4)前饋全連接層,(5)規(guī)范化層,(6)子層連接結(jié)構(gòu),(7)編碼器層,(8)編碼器

2.4.7解碼器部分的實現(xiàn)

(1) 解碼器層,(2)解碼器

2.4.8   輸出部分的實現(xiàn)

(1)線性層,(2)softmax層

2.4.9模型構(gòu)建

2.5案例分析:使用Transformer構(gòu)建語言模型

2.6   GPT3.5預(yù)訓(xùn)練模型架構(gòu)

2.7   大型語言模型(LLM)架構(gòu)

2.8   強(qiáng)化學(xué)習(xí)微調(diào)訓(xùn)練模型架構(gòu)-RLHF架構(gòu)

2.9      ChatGPT應(yīng)用系統(tǒng)架構(gòu)及組成-端邊網(wǎng)云(水平分割)

2.9.1   ChatGPT應(yīng)用終端(PC機(jī)、智能手機(jī)、PAD等)

2.9.2 邊緣計算(邊緣算力)

2.9.3 互聯(lián)網(wǎng)/移動互聯(lián)網(wǎng)

2.9.4 云(超級計算機(jī)、超級算力)-云數(shù)據(jù)中心(Microsoft Azure、國資云(國家云)、天翼云、移動云、沃云、華為云、百度云、阿里云、騰訊云等)

2.10 ChatGPT系統(tǒng)架構(gòu)優(yōu)化及應(yīng)用推廣

模塊三:技術(shù)篇-ChatGPT關(guān)鍵技術(shù)及原理詳解

 

 

3.   ChatGPT關(guān)鍵技術(shù)及原理詳解

3.1 ChatGPT的關(guān)鍵技術(shù)體系

3.2 ChatGPT的技術(shù)基礎(chǔ)-AI:人工智能

3.2.1機(jī)器學(xué)習(xí)- ML

3.2.2深度學(xué)習(xí)

3.2.3 神經(jīng)網(wǎng)絡(luò)

3.2.4自然語言處理-NLP

3.2.5 人工智能生成內(nèi)容-AIGC

3.3 ChatGPT的關(guān)鍵技術(shù)-Transformer技術(shù)

3.3.1什么是Transformer?

3.3.2 Encoder-Decoder技術(shù)

3.3.3 Transformer分類模型

3.3.4 Transformer算法-GTP3.5預(yù)訓(xùn)練模型

3.3.5預(yù)訓(xùn)練模型-自然語言理解

3.3.6預(yù)訓(xùn)練模型-長序列建模

3.3.7預(yù)訓(xùn)練模型-模型優(yōu)化

3.3.8 Transformer算法流程

3.3.9 問題:Transformer算法的改進(jìn)及主要優(yōu)點是什么?

3.4 ChatGPT的關(guān)鍵技術(shù)-GPT:預(yù)訓(xùn)練生成模型

3.5 ChatGPT的關(guān)鍵技術(shù)-LLM:大型語言模型

3.6 ChatGPT的關(guān)鍵技術(shù)-RLHF:基于人類反饋的強(qiáng)化學(xué)習(xí)

3.7 ChatGPT的關(guān)鍵技術(shù)-數(shù)據(jù)標(biāo)注

模塊四:算力篇-ChatGPT算力需求及算力布局

 

4.   ChatGPT算力需求及算力布局

4.1  人工智能(AI)復(fù)雜算法的算力需求分析

4.1.1 人工智能不同算法的算力需求分析

4.1.2 ChatGPT算力需求分析

4.1.3 ChatGPT算力需求舉例

4.2算力的概念及量綱

4.3 算力的分類

4.3.1基礎(chǔ)算力(基于CPU芯片)

4.3.2 智能算力(基于AI芯片,包括GPU/DPU/FPGA/ASIC芯片等)

4.3.3 超算算力(超級計算機(jī)、計算集群)

4.3.4 量子算力(量子計算機(jī))

4.4 算效的概念

4.5 綜合算力(算力+存力+運力)

4.6算力應(yīng)用場景

4.7 算力部署策略-“東數(shù)西算”工程

4.7.1“東數(shù)西算”的概念

4.7.2 “東數(shù)西算”的應(yīng)用場景

4.7.3 “東數(shù)西算”的數(shù)據(jù)處理

4.7.4 “東數(shù)西算”工程總體架構(gòu)(8大樞紐中心、10大數(shù)據(jù)中心集群)

4.7.5數(shù)據(jù)中心業(yè)務(wù)類型

4.7.6數(shù)據(jù)中心集群建設(shè)規(guī)模

4.7.7 “東數(shù)西算”工程建設(shè)方案:聯(lián)接力+運力+算力+智力

4.8算力部署方案-算力網(wǎng)絡(luò)

4.8.1 算力網(wǎng)絡(luò)的定義及技術(shù)特點

4.8.2 算力網(wǎng)絡(luò)與現(xiàn)有通信網(wǎng)絡(luò)的區(qū)別

4.8.3 算力網(wǎng)絡(luò)的工作原理及業(yè)務(wù)流程

4.8.4 算力網(wǎng)絡(luò)的標(biāo)準(zhǔn)架構(gòu)與接口

4.8.5 算力網(wǎng)絡(luò)系統(tǒng)架構(gòu)與組成

4.8.6 算力網(wǎng)絡(luò)的建設(shè)方案

4.9 基于“東數(shù)西算”工程的ChatGPT部署策略-安全、高可靠運行等

4.9.1 西部數(shù)據(jù)中心-ChatGPT大型語言模型建模與訓(xùn)練

4.9.1 東部數(shù)據(jù)中心-ChatGPT推理服務(wù)等

4.10 基于“算力網(wǎng)絡(luò)”的ChatGPT部署策略-海量數(shù)據(jù)處理、超級算力、高可靠、低時延、安全等

模塊五:體驗篇-ChatGPT基本功能及使用體驗

 

5.   ChatGPT基本功能及使用體驗

5.1 ChatGPT的基本功能及特征

5.2 ChatGPT的基本功能-語言處理功能及描述

文本生成、文本補(bǔ)全、文本分類、文本校正、詩歌生成、內(nèi)容創(chuàng)建、問答、翻譯、摘要、改寫、情感分析、聊天機(jī)器人等

5.3 ChatGPT的高級功能-高端應(yīng)用功能及描述

編寫和調(diào)試計算機(jī)程序、程序修改、模擬Linux系統(tǒng)、企業(yè)策劃、方案設(shè)計、項目咨詢、文學(xué)創(chuàng)作、撰寫演講提綱、撰寫分析報告、金融分析、工業(yè)自動化、醫(yī)學(xué)診斷、教育、供應(yīng)鏈管理、銷售和營銷、法律應(yīng)用、科學(xué)研究等。

5.4 ChatGPT使用體驗及效果評估

模塊六:應(yīng)用篇-ChatGPT應(yīng)用場景及行業(yè)布局

 

6.   ChatGPT應(yīng)用場景及行業(yè)布局

6.1      ChatGPT應(yīng)用總體思路:運用ChatGPT技術(shù)方案及思想賦能行業(yè)數(shù)智化轉(zhuǎn)型及落地實施

6.2 ChatGPT應(yīng)用場景及行業(yè)領(lǐng)域分析

6.3 ChatGPT+機(jī)器人場景應(yīng)用方案及布局

6.3.1 ChatGPT生成式預(yù)訓(xùn)練模型升級各行業(yè)機(jī)器人

6.3.2 ChatGPT+行業(yè)機(jī)器人賦能行業(yè)應(yīng)用

6.4 ChatGPT聊天機(jī)器人+智慧家庭應(yīng)用方案及布局

6.4.1 ChatGPT聊天機(jī)器人精心陪伴老人

6.4.2 ChatGPT聊天機(jī)器人陪伴兒童成長

6.5 基于ChatGPT聊天機(jī)器人的智能客服應(yīng)用

6.6 ChatGPT+工業(yè)場景應(yīng)用方案及布局

6.6.1 GPT生成式預(yù)訓(xùn)練模型+專家系統(tǒng)融合應(yīng)用

6.6.2 GPT生成式預(yù)訓(xùn)練模型優(yōu)化專家系統(tǒng)

6.6.3 GPT預(yù)訓(xùn)練優(yōu)化模型提高產(chǎn)品質(zhì)檢效率

6.6.4 GPT預(yù)訓(xùn)練優(yōu)化模型提高設(shè)備預(yù)測性維護(hù)的能力

6.6.5 GPT預(yù)訓(xùn)練優(yōu)化模型提高設(shè)備精準(zhǔn)故障定位的能力

6.7 ChatGPT+農(nóng)業(yè)場景應(yīng)用方案及布局

6.8 ChatGPT+醫(yī)療場景應(yīng)用方案及布局

6.9 ChatGPT+教育場景應(yīng)用方案及布局

6.10 ChatGPT+金融場景應(yīng)用方案及布局

6.11 ChatGPT+展覽宣傳場景應(yīng)用方案及布局

6.12 ChatGPT+新媒體場景應(yīng)用方案及布局

模塊七:商業(yè)篇-ChatGPT商業(yè)模式及商機(jī)挖掘

 

7.ChatGPT商業(yè)模式及商機(jī)挖掘

7.1 ChatGPT商業(yè)模式架構(gòu)-MaaS(模型即服務(wù))

7.1.1 什么是MaaS(模型即服務(wù))?

7.1.2 MaaS(模型即服務(wù))架構(gòu)

7.1.3 MaaS(模型即服務(wù))架構(gòu)基座-大模型

7.1.4 MaaS(模型即服務(wù))整體產(chǎn)業(yè)架構(gòu)

7.1.5 MaaS(模型即服務(wù))商業(yè)模式的核心:“模型→單點工具(如ChatGPT)→應(yīng)用場景”的服務(wù)路徑

7.2 ChatGPT的商業(yè)模式

7.2.1 訂閱制收費模式-直接收費

7.2.2 通過API接口提供技術(shù)服務(wù)-賦能收費(根據(jù)API的使用量和質(zhì)量級別收取費用)

(1)提供大模型服務(wù)-賦能行業(yè)應(yīng)用

(2)許可證銷售服務(wù)

7.3 案例:Hugging Face商業(yè)模式

7.3.1 AutoTrain模式

7.3.2 Interface API & Infinity模式

7.3.3 Private Hub模式

7.3.4 Expert Support模式

7.3 ChatGPT的商機(jī)挖掘-賦能行業(yè)應(yīng)用

模塊八:產(chǎn)業(yè)篇-ChatGPT產(chǎn)業(yè)發(fā)展及投資分析

 

 

 

 

 

 

 

8. ChatGPT產(chǎn)業(yè)發(fā)展及投資分析

8.1 ChatGPT產(chǎn)業(yè)生態(tài)構(gòu)建與參與角色

8.2  ChatGPT涉及的上下游產(chǎn)業(yè)鏈分析

8.2.1 算力相關(guān)產(chǎn)業(yè)分析(AI芯片/GPU/DPU/FPGA/ASIC芯片等,服務(wù)器、數(shù)據(jù)中心、云計算、邊緣計算等)

8.2.2 算法服務(wù)相關(guān)產(chǎn)業(yè)分析

8.2.3 算力網(wǎng)絡(luò)相關(guān)產(chǎn)業(yè)分析

8.2.4自然語言處理(NLP)相關(guān)產(chǎn)業(yè)分析

8.2.5人工智能生成內(nèi)容(AIGC)相關(guān)產(chǎn)業(yè)分析

8.2.6數(shù)據(jù)標(biāo)注相關(guān)產(chǎn)業(yè)分析

8.2.7 ChatGPT下游應(yīng)用場景相關(guān)產(chǎn)業(yè)分析(智能客服、搜索引擎、圖像、文字、代碼生成等)

8.2.8 ChatGPT產(chǎn)業(yè)發(fā)展的切入點及路徑分析

8.2.9 ChatGPT對我國AI技術(shù)和產(chǎn)業(yè)發(fā)展的示范效應(yīng)分析

8.2.10 ChatGPT產(chǎn)業(yè)發(fā)展市場前景分析

8.3 ChatGPT產(chǎn)業(yè)投資機(jī)會及方向分析

8.4 我國ChatGPT相關(guān)上市公司核心競爭力及投資分析

模塊九:建議篇-ChatGPT面臨挑戰(zhàn)及發(fā)展建議

9. ChatGPT面臨的挑戰(zhàn)及發(fā)展建議

9.1ChatGPT面臨的挑戰(zhàn)分析

9.1.1 ChatGPT技術(shù)及應(yīng)用發(fā)展面臨哪些挑戰(zhàn)?(數(shù)據(jù)的實時性問題,數(shù)據(jù)的真實性問題,模型在線推理端成本問題,算法過度優(yōu)化對性能的影響(古德哈特定律),數(shù)據(jù)標(biāo)注產(chǎn)生算法偏見等)

9.1.2 ChatGPT面臨的最大挑戰(zhàn)是什么?如何應(yīng)對?(錯誤的數(shù)據(jù),挑逗性提問等導(dǎo)致產(chǎn)生法律、道德、宗教信仰、歧視性等方面的問題)

9.1.3 黑客利用ChatGPT進(jìn)行網(wǎng)絡(luò)攻擊面臨的挑戰(zhàn)及應(yīng)對策略

9.2 ChatGPT主要的創(chuàng)新點和技術(shù)壁壘分析

9.3 ChatGPT給我們的啟示是什么?(從產(chǎn)品創(chuàng)新角度分析)

9.4 ChatGPT的發(fā)展對相關(guān)產(chǎn)業(yè)的影響分析及應(yīng)對策略

9.5 ChatGPT的發(fā)展對相關(guān)職業(yè)領(lǐng)域的影響分析及應(yīng)對策略

9.6 ChatGPT的發(fā)展對人類社會的生活、工作和學(xué)習(xí)等產(chǎn)生的影響分析及應(yīng)對策略

9.7 ChatGPT技術(shù)及應(yīng)用發(fā)展建議

9.7.1 ChatGPT技術(shù)及應(yīng)用發(fā)展的切入點及路徑

9.7.2 基于ChatGPT的示范效應(yīng)推動我國AI技術(shù)和行業(yè)賦能應(yīng)用的發(fā)展

9.7.3 基于ChatGPT的示范效應(yīng)加快我國AIGC產(chǎn)業(yè)商用化落地進(jìn)程

9.7.4 基于ChatGPT和AIGC技術(shù)變革數(shù)字內(nèi)容的生產(chǎn)方式和消費模式

9.7.5 基于ChatGPT和AIGC技術(shù)推動元宇宙應(yīng)用與發(fā)展的商用進(jìn)程,賦能我國數(shù)字經(jīng)濟(jì)高質(zhì)量發(fā)展

六、  課程總結(jié):

(1)重點知識回顧與總結(jié);

(2)互動與討論:問與答。

就學(xué)員提出的問題進(jìn)行分析、討論、模擬演練和點評。

七、  培訓(xùn)方式/工具及方法

培訓(xùn)方式及方法:

本課程采用模塊化教學(xué)方法通過理論講授,案例分析,方法傳授、動畫演示、互動討論,講師點評、實戰(zhàn)演練、項目展示等多種教學(xué)手段與方法,將ChatGPT關(guān)鍵技術(shù)、商業(yè)模式及產(chǎn)業(yè)發(fā)展布局與大量的典型案例結(jié)合起來,達(dá)到學(xué)以致用、解決實際問題的目的。

培訓(xùn)工具:PPT講義、項目案例演示、投影儀、白板、白紙、彩筆、音響設(shè)備、話筒等。

評估方法:(1)學(xué)員學(xué)習(xí)成果(項目解決方案)評估;(2)學(xué)員打分評估。

 
反對 0舉報 0 收藏 0
更多>與ChatGPT技術(shù)與商業(yè)模式及產(chǎn)業(yè)發(fā)展布局相關(guān)內(nèi)訓(xùn)課
商業(yè)模式魔方前言 新產(chǎn)品開發(fā)與營銷創(chuàng)新 游戲式積分管理模式 商業(yè)秘密的保護(hù)與反情報技術(shù) ——企業(yè)如何建盾牌挖蛀蟲 如何進(jìn)行產(chǎn)品策劃與營銷創(chuàng)新 如何進(jìn)行產(chǎn)品策劃與價格制定 品牌策劃、管理與推廣 定位理論與市場競爭策略——市場經(jīng)理工作的內(nèi)容、步驟和策略
李文耀老師介紹>李文耀老師其它課程
ChatGPT技術(shù)與商業(yè)模式及產(chǎn)業(yè)發(fā)展布局
網(wǎng)站首頁  |  關(guān)于我們  |  聯(lián)系方式  |  誠聘英才  |  網(wǎng)站聲明  |  隱私保障及免責(zé)聲明  |  網(wǎng)站地圖  |  排名推廣  |  廣告服務(wù)  |  積分換禮  |  網(wǎng)站留言  |  RSS訂閱  |  違規(guī)舉報  |  京ICP備11016574號-25